CO₂ MINERAL CARBONATION BY OIL SHALE WASTES FROM ESTONIAN POWER PRODUCTIONS

Mai Uibu, Rein Kuusik and Kazbulat Shogenov

Laboratory of Inorganic Materials
Institute of Geology
Tallinn University of Technology
1. Background
2. Characterization of ashes
3. Concept of CO₂ mineralization
4. Reaction mechanism
5. Direct aqueous carbonation of oil shale ash
6. Indirect aqueous carbonation of oil shale ash
7. A new method for eliminating CO₂ from flue gases by Ca-containing wastes
8. Expected amounts of CO₂ bound
9. Conclusions
10. Publications
1. Background

CO\textsubscript{2} atmospheric concentration
- 280 ppm (pre industrialization) → 384 ppm (2007)
- Annual growth rate 2 ppm since the year 2000

Meeting the challenge of anthropogenic climate change:

Adaption

Mitigation:
- **Counter measures:** natural fixation into biomass, dissolution into ocean
- **Direct reduction:**
 - **Improved efficiency**
 - **Fuel switching:** lower C/H ratio, nuclear power, renewable energy
 - **CO\textsubscript{2} capture and storage:** geological storage, ocean storage,

CO\textsubscript{2} sequestration by mineral carbonation

13-14 April 2011 1st Awareness raising Workshop - Vilnius
CO₂ sequestration by mineral carbonation

- Waste residues (from power sector, steel industry and cement industry)

 + Usually situated near the CO₂ emission source
 + Main reactive species are Ca-silicates, CaO, Ca(OH)₂
 - Limited storage capacity

 No mining, low transport costs!
 More reactive towards CO₂!
 Not enough for serious reduction of CO₂ emissions!

Extra value:
+ Stabilization of waste material
+ By-products with high commercial value (PCC)
Heat and power production in Estonia is based on combustion of oil shale:

Since 1959 pulverized firing (PF). Since 2004 also the circulating fluidized bed combustion (CFBC).

Accompanied by:

1. High CO₂ emissions
 + mineral CO₂ from carbonate decomposition
 Total: 948 – 1199 t CO₂/GWh

2. Formation of alkaline ash
 ~ 5 million tons annually
 (Ash content of oil shale is 42 – 48%)

- Ash contains up to 25% of free CaO which strongly basifies (pH 13) transportation waters formed during hydraulic transport of ash.
- Ca- and Mg-oxides and silicates could in certain conditions be the binders of CO₂.

Emissions and waste flows from energy production

![Emissions and waste flows from energy production](image)

Oil shale opencast, N-E Estonia

Oil shale seam, underground mine, N-E Estonia

13-14 April 2011

1st Awareness raising Workshop - Vilnius
Estonian oil shale is a carbonaceous fine-grained sedimentary rock of Ordovician age containing 10–60\% kerogen (solid organic matter), 20–70\% carbonates represented by limestone, or more rarely by dolomite, and 15–60\% siliciclastic minerals.

During combustion of one tonne of oil shale 450-550 kg of ash is produced (in case of mineral coal only 100 kg of ash is produced).
2. Characterization of ashes

Circulated fluidized bed combustion (CFBC)

- BA (bottom ash) ~30%
- INT (Intrex ash) ~11%
- ECO (economizer ash) ~6%
- PHA (air preheater ash) ~3%
- ESPA ~50%

Pulverized firing (PF)

- BA (bottom ash) ~15%
- SHA (superheater ash)
- ECO (economizer ash) ~15%
- CA (cyclone ash) ~60%
- ESPA (electrostatic precipitator ash) ~10%

\[t = \text{720-800°C, } k_{\text{CO}_2} = 0.75-0.85 \]
\[t = \text{1250-1400°C, } k_{\text{CO}_2} = 0.97 \]
Phase composition

<table>
<thead>
<tr>
<th></th>
<th>CFBC ash</th>
<th>PF ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lime CaO</td>
<td>3.2-19.9%</td>
<td>14.3-29.3%</td>
</tr>
<tr>
<td>Periclase MgO</td>
<td>3.3-7.0%</td>
<td>3.8-7.9%</td>
</tr>
<tr>
<td>Melilite (Ca,Na)(_2)(Mg,Al)(Si,Al)(_3)O(_7)</td>
<td>1.0-3.6%</td>
<td>3.2-18.9%</td>
</tr>
<tr>
<td>Merwinitie Ca(_3)Mg(SiO(_4))(_2)</td>
<td>3.0-5.2%</td>
<td>6.5-13.2%</td>
</tr>
<tr>
<td>Belite Ca(_2)SiO(_4)</td>
<td>4.6-7.3%</td>
<td>12.3-20.3%</td>
</tr>
<tr>
<td>Wollastonite CaSiO(_3)</td>
<td>1.4-3.4%</td>
<td>0.7-2.6%</td>
</tr>
<tr>
<td>Orthoclase, KAlSi(_3)O(_8)</td>
<td>1.3-15.6%</td>
<td>1.7-9.7%</td>
</tr>
<tr>
<td>Quarz SiO(_2)</td>
<td>5.6-17.7%</td>
<td>1.6-10.4%</td>
</tr>
<tr>
<td>Calcite CaCO(_3)</td>
<td>4.0-34.8%</td>
<td>2.0-7.6%</td>
</tr>
<tr>
<td>Anhydrite CaSO(_4)</td>
<td>8.8-29.9%</td>
<td>4.6-24.1%</td>
</tr>
</tbody>
</table>

Quantitative XRD performed at Institute of Geology, UT

13-14 April 2011

1st Awareness raising Workshop - Vilnius
Morphology

CFBC ash
- Irregular shape;
- Porous and uneven surface;
- The glassy phase is not formed.

PF ash
- Regular spherical shape;
- Smooth surface;
- The glassy phase is formed.

SEM analysis performed by Dr. V. Mikli at Center of Material Research, TUT
3. Concept of CO₂ mineralization

- The amount of CO₂ emitted during oil shale-based heat and power generation could be diminished by intensification of natural CO₂-binding process occurring during ash transportation and deposition.
- At the same time the alkaline effect of waste ashes is reduced.
4. Reaction Mechanism

In the context of CO₂ sequestration and ash stabilization, the availability of lime for hydration and carbonation reactions is of key importance.

- Impact of solution composition
- Impact of specific surface area
Ca-Mg-silicates in aqueous carbonation process

- Ca/Mg-silicate (s) + 2H^+ (aq) \rightarrow $(Ca/Mg)^{2+}$ (aq) + SiO_2 (s) + H_2O (l)
- $CaSiO_3 + 2H^+ (aq) \rightarrow Ca^{2+} (aq) + SiO_2(s) + H_2O(l)$
- $Ca_2SiO_4 + 4H^+ (aq) \rightarrow 2Ca^{2+} (aq) + SiO_2(s) + 2H_2O(l)$
- $Ca_3Mg(SiO_4)_2 + 8H^+ (aq) \rightarrow 3Ca^{2+} (aq) + Mg^{2+} + 2SiO_2(s) + 4H_2O(l)$
- $Ca^{2+} (aq) + HCO_3^- (aq) \rightarrow CaCO_3 (s) + H^+ (aq)$
- $Mg^{2+} (aq) + HCO_3^- (aq) \rightarrow MgCO_3 (s) + H^+ (aq)$

Oil shale ashes contain also Ca-Mg-silicates ($CaSiO_3$, Ca_2SiO_4, $Ca_3Mg(SiO_4)_2$). CO_2 dissolves in water to form carbonic acid which dissociates to H^+ and CO_3^{2-}. The H^+-ions react with the Ca-(Mg)-silicates, liberating Ca^{2+} (and Mg^{2+})-ions, which in turn react with HCO_3^--ions to form solid carbonate.
5. Direct aqueous carbonation of oil shale ash

1. Batch process:

\[
\begin{align*}
&\text{Model gas: } CO_2 (10-15\%) + \text{air} \\
&\text{pH, EC} \\
&\text{Solid product} \\
&\text{Liquid phase} \\
&\text{Separation}
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=11.5-12 \\
&Ca^{2+}=1.1-1.5g/L \\
&CaCO_3=18-36\% \\
&CaO_{\text{free}}=4-15\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=10-11.5 \\
&Ca^{2+}=0.8-1.1g/L \\
&CaCO_3=27-43\% \\
&CaO_{\text{free}}=2-5\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=7.5-9 \\
&Ca^{2+}=0.4-0.7g/L \\
&CaCO_3=34-45\% \\
&CaO_{\text{free}}=0.6-2\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=6.5-7 \\
&\text{Carbonation of } Ca-Mg-silicates
\end{align*}
\]

2. Continuous flow process:

\[
\begin{align*}
&\text{Off gas analysis: } CO_2; H_2S; SO_2; O_2 \\
&\text{Liquid phase} \\
&\text{Solid product}
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=11.5-12 \\
&Ca^{2+}=1.1-1.5g/L \\
&CaCO_3=18-36\% \\
&CaO_{\text{free}}=4-15\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=10-11.5 \\
&Ca^{2+}=0.8-1.1g/L \\
&CaCO_3=27-43\% \\
&CaO_{\text{free}}=2-5\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=7.5-9 \\
&Ca^{2+}=0.4-0.7g/L \\
&CaCO_3=34-45\% \\
&CaO_{\text{free}}=0.6-2\%
\end{align*}
\]

\[
\begin{align*}
&\text{pH}=6.5-7 \\
&\text{Carbonation of } Ca-Mg-silicates
\end{align*}
\]

Ashes:
- **PF ash** CaO$_r$~22.4%
- **CFBC ash** CaO$_r$~12.4%

Conditions: P~1 atm, t~20°C; S/L=0.1w/w
Direct aqueous carbonation of oil shale ashes

By extending the carbonation treatment (up to 1 hour) at lower pH region (pH~7) it is possible to increase the amount of CO₂ bound on account of Ca-silicates (an example based on PF ash):

Free CaO
16.15 g CO₂/100 g PFA
CaO, Ca(OH)₂
~56% of the total CO₂ bound

Ca-silicates:
9.61 g CO₂/100g PFA
Predominantly Ca₂SiO₄
~33% of the total CO₂ bound

Other (Mg, K compounds):
3.1 g of CO₂/100g PFA
~11% of the total CO₂ bound

Total amount of CO₂ bound by PFA:
29 g CO₂/100 g PFA

Theoretical CO₂ binding ability:
35 g CO₂/100g PFA

<table>
<thead>
<tr>
<th>Carbonated ashes</th>
<th>CaO, %</th>
<th>CO₂, %</th>
<th>BD<sub>CO₂</sub>, %</th>
<th>CO₂,kg/ash,t (bound)</th>
<th>pH of aqueous solution of solid residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFBC ashes</td>
<td>>1</td>
<td>20</td>
<td>87</td>
<td>100</td>
<td>9.0</td>
</tr>
<tr>
<td>PF ashes</td>
<td>1-2.9</td>
<td>17-20</td>
<td>65</td>
<td>160</td>
<td>11.0</td>
</tr>
</tbody>
</table>
6. Indirect aqueous carbonation of oil shale ash

Step 1. Reactive component (Ca\(^{2+}\)ion) is extracted from the feedstock (ash).

Step 2. Reactive component (Ca\(^{2+}\)ion) is reacted with CO\(_2\) to form solid carbonates.
- \(\text{Ca}^{2+}(aq) + 2\text{OH}^-(aq) + \text{CO}_2(g) \rightarrow \text{CaCO}_3(s) + \text{H}_2\text{O}(l) \)
- \(\text{CO}_2 (g) + \text{OH}^-(aq) \rightarrow \text{HCO}_3^-(aq) \)
Characterization of solid product (PCC):

- $\text{CaCO}_3 = 94-96\%$
- Rhombohedral crystal structure
- Brightness ISO 2470:1999 93%
- Homogeneous particle size distribution $d_{\text{mean}} = 4-8\mu m$
7. A new method for eliminating CO$_2$ from flue gases by Ca-containing waste material

The process includes contacting the aqueous suspensions of Ca-containing waste material with CO$_2$-containing flue gas in two steps:

1. **First step**: keeping the pH levels in the range of 10–12.
 The water-soluble components such as *free lime* are carbonated in the *first step*.

2. **Second step**: keeping the pH levels in the range of 7–8.
 The components of low water-solubility, in which *Ca is generally contained in the form of silicates*, are carbonated in the *second step*.

Conditions: atmospheric pressure, room temperature
As another process route:

1. Separating *free lime* from ash by leaching it into the aqueous solutions in order to produce precipitated calcium carbonate (PCC) as a commercial product.

2. The lime depleted residue (LDM) is able to bind an additional amount of CO₂ on account of *Ca-silicates*.
The amount of CO₂ bound per 1 million ton of ash:

1. By ash transportation water 52,000 t
2. By ash deposits 60,000 t
3. By carbonation of ash suspensions 140,000 t
4. Sum of technological abatement 192,000 t

10.3% from total CO₂ emitted
62.7% from mineral CO₂ emitted

Per 1 year: 0.9 – 1.0 million t (at production level 2006)

By 1 million m³ of alkaline ash transportation water

- CO₂ captured: 950 - 1000 t
- PCC formed: 2200 - 2300 t
9. Conclusions

- The concept of CO$_2$ mineral sequestration *by* ashes from Estonian power production has been worked out.
- Ashes from oil shale combustion have been characterized as sorbents for CO$_2$ binding from flue gases in aqueous mineral carbonation processes.
- CO$_2$ fixation from model gas via direct and indirect aqueous carbonation of oil shale ash at mild operating conditions has been demonstrated:
 - The CO$_2$ binding potential of various ash components has been evaluated.
 - Indirect aqueous carbonation of oil shale ash could provide a waste valorization option by production of precipitated CaCO$_3$.
 - Based on multifaceted studies related to carbonation of oil shale ash, a new method for eliminating CO$_2$ from flue gases by Ca-containing waste material has been proposed.

The total amount of CO$_2$ bound averaged to **190-210 kg/t ash** or 10-11% and 60-65% of the total and mineral carbon content, respectively.
10. Publications of mineral carbonation
by Laboratory of Inorganic Materials, Tallinn University of Technology

Acknowledgements

The research was supported by
- Estonian Ministry of Education and Research (SF0140082s08)
- Estonian Science Foundation (Grant No 7379)
Thank You very much!
About 77% of the mined oil shale with lower calorific value is used as boiler fuel in large power plants. During combustion of oil shale CO₂ is formed not only as a burning product of organic carbon, but also as a decomposition product of the ash carbonate part. Therefore the total content of carbon dioxide increases up to 15% in flue gases of oil-shale. Oil shale ash contains up to 20-25% free Ca-Mg oxides. Portlandite Ca(OH)₂ forming from free lime during hydraulic transportation and wet deposition of ash can bind CO₂ also from air. Natural weathering process could be accelerated by simple methods. It has been demonstrated by batch and continuous mode experiments, that by processing of the ash – water suspension by flue gases, the CO₂ binding ability of ash could be utilized completely. The results of these experiments show that watered oil shale ash can bind 80-160 kg and more of CO₂ per one tonne of ash, and 30-80 kg CO₂ could be bound by alkaline wastewater used for transportation of one tonne of ash [6]. From annual production of about **16.3 mln tonnes of oil shale in Estonia in 2007, 14.3 mln t (88%)** are the share of oil shale combustion by Energy Sector. Taking into account that 450-550 kg of ash is produced from every one tonne of combusted oil shale, about **7 mln tonnes of ash was produced in 2007**. The amount of CO₂ bound by oil shale ash in wet mineralization process by flue gas could reach 560 – 1120 thousand tones and by alkaline wastewater neutralization process in reactor 210– 560 thousand tonnes. The maximum amount of CO₂ bound with flue gas could be summarized as 770 – 1680 thousand tonnes. Taking into account that big industrial Energy enterprises using mainly oil shale produced 14.5 million tonnes CO₂ in 2007, the CO₂ amount which is possible to bind with oil shale ash and transportation water by flue gas could reach 10-12% of emitted by power plants CO₂ [6, 7]. There exist some prerequisites that carbonates formed as result of the binding process could be separated and used as independent by-product, but more useful is to store them in the closed oil-shale mines. The last solution will permit to fill underground mining cavities and to prevent environmental problems arising from ash heaps.

Remark 2:

13-14 April 2011 1st Awareness raising Workshop - Vilnius